
IIT Kanpur

C Course

Lecture 3
Aug 31, 2008

1

Rishi Kumar <rishik>, Final year BT-MT, CSE

Recap
• Signed and Unsigned data types in C

• Let’s consider signed and unsigned int in C.
C allocates 2 bytes(can vary from one compiler to
another)

• For unsigned int,
All bits are used to represent the magnitude.
Thus 0 to 216 – 1 can be represented.

• For signed int,
1 bit is reserved for sign. (0 for +ve and 1 for –ve)
Thus +ve numbers range from 0 to 215 – 1
For –ve numbers we use 2’s complements.
What’s 2’s complement?

2

Recap
• Signed and Unsigned data types in C

• Let’s consider signed and unsigned int in C.
C allocates 2 bytes(can vary from one compiler to another)

• For unsigned int,
All bits are used to represent the magnitude.
Thus 0 to 216 – 1 can be represented.

• For signed int,
1 bit is reserved for sign. (0 for +ve and 1 for –ve)
Thus +ve numbers range from 0 to 215 – 1
For –ve numbers we use 2’s complements.
What’s 2’s complement?
In 2’s complement to represent a –ve number (say -x) in n bits
- Compute 2n – x. Represent this magnitude as unsigned int in n

bits.
- The range is 0 to – 215 . How?

3

Logical Expressions

• Formed using
– 4 relational operators: <, <=, >, >=

– 2 equality operators: ==, !=

– 3 logical connectives: &&, ||, !

• int type: 1(true) or 0 (false)

• Some examples are
- If x = 8, y = 3, z = 2 what is the value of

x >= 10 && y < 5 || z ==2

4

Logical Expressions

• Formed using
– 4 relational operators: <, <=, >, >=
– 2 equality operators: ==, !=
– 3 logical connectives: &&, ||, !

• int type: 1(true) or 0 (false)

• Some examples are
- If x = 8, y = 3, z = 2 the value of

x >= 10 && y < 5 || z ==2 is 1.
- Precedence comes into picture. Remember last

lecture?

5

Conditional Operator [?:]

• A conditional expression is of the form
expr1 ? expr2 : expr3

The expressions can recursively be conditional
expressions.

• A substitute for if-else

• Example :

(a<b)?((a<c)?a:c):((b<c)?b:c)

What does this expression evaluate to?

6

Conditional Operator [?:]

• A conditional expression is of the form
expr1 ? expr2 : expr3

The expressions can recursively be conditional
expressions.

• A substitute for if-else

• Example :

(a<b)?((a<c)?a:c):((b<c)?b:c)

This evaluates to min(a,b,c)

7

if-else statement
• The syntax is

– if(expr) stmt

– if(expr) stmt1 else stmt2

Note that stmt, stmt1, stmt2 can either be simple or
compound or control statements.
– Simple statement is of the form expr;
– Compound statement is of the form

{

stmt1;

stmt2;

……….

stmtn;

}

– Control Statement: will be discussed through this lecture.
involves if-else,for,switch, etc

e.g- if(expr) stmt1 else stmt2

8

if-else : some examples

• x = 1; y = 10;
if(y < 0) if(y > 0) x = 3;
else x = 5;
printf(“%d\n”, x);

What is the output here?

• if(z = y < 0) x = 10;
printf(“%d %d\n”, x, z);

What is the output here?

9

if-else : some examples
• x = 1; y =10;

if(y < 0) if(y > 0) x = 3;
else x = 5;
printf(“%d\n”, x);

Output is : 1

Dangling else: else clause is always associated with
the closest preceding unmatched if.

• if(z = y < 0) x = 10;
printf(“%d %d\n”, x, z);

The above code is equiv to the following one:

z = y <0;

if (z) x = 10;

printf(“%d %d\n”, x ,z);

Output is: 1 0
10

While and do-while

• Syntax is
– while(expr) stmt

• As long as expr is true, keep on executing the stmt in

loop

– do stmt while(expr)

• Same as before, except that the stmt is executed

at least once.

• Example: int i=0, x=0 ;

while (i<10) {

if(i%3==0) {

x += i;

printf(“%d “, x);

}

++i;

}

What is the output here?
11

While and do-while

• Syntax is
– while(expr) stmt

• As long as expr is true, keep on executing the stmt in

loop

– do stmt while(expr)

• Same as before, except that the stmt is executed

at least once.

• Example: int i=0, x=0 ;

while (i<10) {

if(i%3==0) {

x += i;

printf(“%d “, x);

}

++i;

}

Output is: 0 3 9 18
12

for statement
• Syntax is

– for(expr1; expr2; expr3) stmt

• expr1 is used to initialize some parameters

• expr2 represents a condition that must be true for the
loop to continue

• expr3 is used to modify the values of some parameters.

– It is equiv to
expr1;

while (expr2) {

stmt

expr3;

}

13

for statement
• This piece of code has equivalent
for statement as follows: expr1a;

expr1b;

while (expr2) {

stmt

expr3a;

expr3b;

}

for (expr1a, expr1b; expr2; expr3a, expr3b) stmt

• Note that in the for statement expr1, expr2, expr3
need not necessarily be present. If expr2 is not there, then
the loop will go forever. 14

for statement: some examples

• int i, j, x;

for(i=0, x=0; i<5; ++i)

for(j=0; j<i; ++j) {

x += (i+j-1);

printf(“%d ”, x);

}

What is the output here?

15

for statement: some examples

• int i, j, x;

for(i=0, x=0; i<5; ++i)

for(j=0; j<i; ++j) {

x += (i+j-1);

printf(“%d ”, x);

}

• Output is: 0 1 3 5 8 12 15 19 24 30

16

switch statement
• Syntax is

– switch (expr) stmt

– expr must result in integer value; char can be
used(ASCII integer value A-Z: 65-90, a-z: 97-122)

– stmt specifies alternate courses of action
• caseprefixes identify different groups of alternatives.
• Each group of alternatives has the syntax

case expr:

stmt1

stmt2

………

stmtn

Note that parentheses { } are not needed in case block

• Multiple case labels
case expr1:case expr2 :… … …: case exprn:

stmt1

stmt2

………

stmtm
17

switch statement: example

switch (letter = getchar()) {

case„a‟: case ‟A‟: case „e‟ : case „E‟:

case„i‟: case „I‟: case ‟o‟ : case „O‟:

case„u‟: case „U‟:

printf(“Vowel”); break;

default: printf(“Consonant”);

}

- Note the use of multiple cases for one group of alternative.
Also note the use of default. Statement corresponding to
default is always executed.

break to be discussed soon.
18

Power of break

• Syntax is
– break;

• used to terminate loop or exit from a switch.

• In case of several nested while,do-while,
for or switch statements, a break
statement will cause a transfer of control out of
the immediate enclosing statement.

19

break statement: Example

int count =0;

while (count <=n) {

while(c=getchar()!=„\n‟)

{

if (c ==„@‟) break;

… … …

}

++count;

}

20

continue statement
• Used to bypass the remainder of the current pass through a

loop.
• Computation proceeds directly to the next pass through the

loop.
• Example:

for(count=1; x <=100; ++count) {

scanf (“%f “ , &x);

if (x < 0) {

printf(“ it‟s a negative no\n”)

continue;

}

/*computation for non-negative

numbers here*/

}

21

goto statement
• Note that you can tag any statement in C with an identifier.
• And then, can use goto to directly transfer the program

control to that statement .
• Example:

while (x <= 10) {

… … …

if (x<0) goto chkErr;

… … …

scanf(“%f”, &x);

}

chkErr: {

printf(“found a negative value!\n”);

… … …

}

• Note that use of goto is discouraged. It encourages logic
that skips all over the program . Difficult to track the code.
Hard to debug.

22

Questions!!

23

