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Recap
• Signed and Unsigned data types in C

• Let’s consider signed and unsigned int in C.
C allocates 2 bytes(can vary from one compiler to   
another)

• For unsigned int, 
All bits are used to represent the magnitude.  
Thus 0 to 216 – 1 can be represented.

• For signed int,
1 bit is reserved for sign. ( 0 for +ve and 1 for –ve)
Thus +ve numbers range from 0 to 215 – 1 
For –ve numbers we use 2’s complements.
What’s 2’s complement?
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Recap 
• Signed and Unsigned data types in C

• Let’s consider signed and unsigned int in C.
C allocates 2 bytes(can vary from one compiler to another)

• For unsigned int, 
All bits are used to represent the magnitude.  
Thus 0 to 216 – 1 can be represented.

• For signed int,
1 bit is reserved for sign. ( 0 for +ve and 1 for –ve)
Thus +ve numbers range from 0 to 215 – 1 
For –ve numbers we use 2’s complements. 
What’s 2’s complement?
In 2’s complement to represent a –ve number (say -x) in n bits
- Compute 2n – x. Represent this magnitude as unsigned int in n    

bits.
- The range is 0 to – 215 .  How?
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Logical Expressions

• Formed using 
– 4 relational operators: <, <=, >, >= 

– 2 equality operators: ==, !=

– 3 logical connectives: &&, ||, !

• int type: 1(true) or 0 (false)

• Some examples are
- If x = 8, y = 3, z = 2  what is the value of

x >= 10 && y < 5 || z ==2 
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Logical Expressions

• Formed using 
– 4 relational operators: <, <=, >, >= 
– 2 equality operators: ==, !=
– 3 logical connectives: &&, ||, !

• int type: 1(true) or 0 (false)

• Some examples are
- If x = 8, y = 3, z = 2  the value of

x >= 10 && y < 5 || z ==2 is  1.
- Precedence comes into picture. Remember last 

lecture?
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Conditional Operator [ ?: ]

• A conditional expression is of the form
expr1 ? expr2 : expr3

The expressions can recursively be conditional 
expressions.

• A substitute for if-else

• Example :

(a<b)?((a<c)?a:c):((b<c)?b:c)

What does this expression evaluate to?
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Conditional Operator [ ?: ]

• A conditional expression is of the form
expr1 ? expr2 : expr3

The expressions can recursively be conditional 
expressions.

• A substitute for if-else

• Example :

(a<b)?((a<c)?a:c):((b<c)?b:c)

This evaluates to min(a,b,c)
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if-else statement
• The syntax is 

– if(expr) stmt

– if(expr) stmt1 else stmt2

Note that stmt, stmt1, stmt2 can either be simple or 
compound or  control statements.
– Simple statement is of the form expr;
– Compound statement is of the form 

{ 

stmt1; 

stmt2;

……….

stmtn;

}

– Control Statement: will be discussed through this lecture.
involves if-else,for,switch, etc

e.g- if(expr) stmt1 else stmt2
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if-else : some examples

• x = 1; y = 10;
if(y < 0) if(y > 0) x = 3;
else x = 5;
printf(“%d\n”, x);

What is the output here?

• if(z = y < 0) x = 10;
printf(“%d %d\n”, x, z);

What is the output here?
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if-else : some examples
• x = 1; y =10;

if(y < 0) if(y > 0) x = 3;
else x = 5;
printf(“%d\n”, x);

Output is : 1

Dangling else:    else clause is always associated with 
the closest preceding unmatched if.

• if(z = y < 0) x = 10;
printf(“%d %d\n”, x, z);

The above code is equiv to the following one:

z = y <0;

if (z) x = 10;

printf(“%d %d\n”, x ,z);

Output is:  1  0
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While and do-while

• Syntax is
– while(expr) stmt

• As long as expr is true, keep on executing the stmt in

loop 

– do stmt while(expr)

• Same as before, except  that  the stmt is executed 

at least  once.

• Example: int i=0, x=0 ;

while (i<10) {

if(i%3==0) {

x += i;

printf(“%d “, x);

}

++i;

}

What is the output here?
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While and do-while

• Syntax is
– while(expr) stmt

• As long as expr is true, keep on executing the stmt in

loop 

– do stmt while(expr)

• Same as before, except  that  the stmt is executed 

at least  once.

• Example: int i=0, x=0 ;

while (i<10) {

if(i%3==0) {

x += i;

printf(“%d “, x);

}

++i;

}

Output is:   0 3 9 18
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for statement
• Syntax is

– for(expr1; expr2; expr3) stmt

• expr1 is used to initialize some parameters

• expr2 represents a condition that must be true for the 
loop to continue

• expr3 is used to modify the values of some parameters.

– It is equiv to
expr1;

while (expr2) {

stmt

expr3;

}
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for statement
• This piece of code has equivalent 
for statement as follows: expr1a;

expr1b;

while (expr2) {

stmt

expr3a;

expr3b;

}

for ( expr1a, expr1b; expr2; expr3a, expr3b) stmt

• Note that in the for statement  expr1, expr2, expr3
need not  necessarily be present.  If expr2 is not there, then
the loop will go forever. 14



for statement: some examples

• int i, j, x;

for(i=0, x=0; i<5; ++i) 

for(j=0; j<i; ++j) {

x += (i+j-1);

printf(“%d ”, x);

}

What is the output here?
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for statement: some examples

• int i, j, x;

for(i=0, x=0; i<5; ++i) 

for(j=0; j<i; ++j) {

x += (i+j-1);

printf(“%d ”, x);

}        

• Output is:   0 1 3 5 8 12 15 19 24 30
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switch statement
• Syntax is 

– switch (expr) stmt

– expr must result in integer value; char can be 
used(ASCII integer value A-Z: 65-90, a-z: 97-122)

– stmt specifies alternate courses of action
• caseprefixes identify different groups of alternatives.
• Each group of alternatives has the syntax

case  expr:

stmt1

stmt2

………

stmtn

Note that parentheses { } are not needed in case block

• Multiple case labels
case expr1:case expr2 :… … …: case exprn:

stmt1

stmt2

………

stmtm
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switch statement: example

switch (letter = getchar()) {

case„a‟: case ‟A‟: case „e‟ : case „E‟:

case„i‟: case „I‟: case ‟o‟ : case „O‟:

case„u‟: case „U‟:

printf(“Vowel”); break;

default:  printf(“Consonant”);

}

- Note the use of multiple cases for one group of alternative. 
Also note the use of default.  Statement corresponding to 
default is always executed.

break to be discussed soon.
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Power of break

• Syntax is 
– break;

• used to terminate loop or exit from a switch.

• In case of several nested while,do-while, 
for or switch statements,  a break
statement will cause a transfer of control out of 
the immediate enclosing statement.
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break statement: Example

int count =0;

while (count <=n) {

while( c=getchar()!=„\n‟)

{

if ( c ==„@‟) break;

…  …  …

}

++count;

} 
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continue statement
• Used to bypass the remainder of the current pass through a 

loop.
• Computation proceeds directly to the next pass through the 

loop.
• Example:

for( count=1; x <=100; ++count) {

scanf ( “%f “ , &x);

if (x < 0) {

printf(“ it‟s a negative no\n”)

continue;

}

/*computation for non-negative 

numbers here*/

}

21



goto statement
• Note that you can tag any statement in C with an identifier.
• And then, can use goto to directly transfer the program 

control to that statement .
• Example:

while ( x <= 10) {

… … …

if (x<0)  goto chkErr;

… … …

scanf(“%f”, &x);

}

chkErr: {    

printf(“found a negative value!\n”);

… … …

}

• Note that use of goto is discouraged. It encourages logic  
that skips all over the program . Difficult to track the code.
Hard to debug.
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Questions!!
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